분야별 도서

상품 썸네일

돋보기
  • 페이스북
  • 구글
  • 트위터
  • 카카오톡

Logan의 유한요소법 첫걸음

저자 : Daryl L. Logan | 역자: 신종계,김도년, 김유일, 오창국, 이용신, 조성욱 | 출간 연도 : 2017

ISBN 9788962184167 (8962184168 )
가격 42,000원
저자 Daryl L. Logan
역자 신종계,김도년, 김유일, 오창국, 이용신, 조성욱
출간 연도 2017
6
페이지 968쪽
크기 190x260
판매처 한티미디어
자세히보기
  • 판매처한티미디어
  • Tel02 332 7993~4
  • Fax02 332 7995

* 교재는 판매처를 통해 구매하실 수 있습니다.

닫기
원서 ISBN 9781305635111
책소개 목차 저자정보 오탈자

 

이 책은 유한요소법에 대해 다룬 도서입니다. 유한요소법의 기초적이고 전반적인 내용을 학습할 수 있도록 구성했습니다.

 

옮긴이의 머리말 

감사의 글 

기호 설명 

 

01 서론 

02 강성법 (변위법) 

03 트러스 방정식의 유도 

04 보방정식 

05 프레임과 격자 구조물 방정식 

06 평면응력과 평면 변형률 강성방정식 

07 실용적 모델링 ; 결과평가; 평면응력과 변형률 해석 예제 

08 선형 변형률 삼각형 요소 

09 축대칭 요소 

10 등매개변수 정식화 

11 3차원 응열 해석 

12 평판 굽힘 요소 

13 열전달과 물질이동 

14 투과성 매체와 유압 네트워크를 통한 유체 유동 및 전기 회로와 정전기학 

15 열응력 

16 구조 동영학 및 시간 의존성 열전달 

 

부록

  • 1. INTRODUCTION.
    Brief History. Introduction to Matrix Notation. Role of the Computer. General Steps of the Finite Element Method. Applications of the Finite Element Method. Advantages of the Finite Element Method. Computer Programs for the Finite Element Method.
    2. INTRODUCTION TO THE STIFFNESS (DISPLACEMENT) METHOD.
    Definition of the Stiffness Matrix. Derivation of the Stiffness Matrix for a Spring Element. Example of a Spring Assemblage. Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method). Boundary Conditions. Potential Energy Approach to Derive Spring Element Equations.
    3. DEVELOPMENT OF TRUSS EQUATIONS.
    Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates. Selecting Approximation Functions for Displacements. Transformation of Vectors in Two Dimensions. Global Stiffness Matrix for Bar Arbitrarily Oriented in the Plane. Computation of Stress for a Bar in the x-y Plane. Solution of a Plane Truss. Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space. Use of Symmetry in Structure. Inclined, or Skewed, Supports. Potential Energy Approach to Derive Bar Element Equations. Comparison of Finite Element Solution to Exact Solution for Bar. Galerkin''s Residual Method and Its Use to Derive the One-Dimensional Bar Element Equations. Other Residual Methods and Their Application to a One-Dimensional Bar Problem. Flowchart for Solutions of Three-Dimensional Truss Problems. Computer Program Assisted Step-by-Step Solution for Truss Problem.
    4. DEVELOPMENT OF BEAM EQUATIONS.
    Beam Stiffness. Example of Assemblage of Beam Stiffness Matrices. Examples of Beam Analysis Using the Direct Stiffness Method. Distribution Loading. Comparison of the Finite Element Solution to the Exact Solution for a Beam. Beam Element with Nodal Hinge. Potential Energy Approach to Derive Beam Element Equations. Galerkin''s Method for Deriving Beam Element Equations.
    5. FRAME AND GRID EQUATIONS.
    Two-Dimensional Arbitrarily Oriented Beam Element. Rigid Plane Frame Examples. Inclined or Skewed Supports - Frame Element. Grid Equations. Beam Element Arbitrarily Oriented in Space. Concept of Substructure Analysis.
    6. DEVELOPMENT OF THE PLANE STRESS AND STRAIN STIFFNESS EQUATIONS.
    Basic Concepts of Plane Stress and Plane Strain. Derivation of the Constant-Strain Triangular Element Stiffness Matrix and Equations. Treatment of Body and Surface Forces. Explicit Expression for the Constant-Strain Triangle Stiffness Matrix. Finite Element Solution of a Plane Stress Problem. Rectangular Plane Element (Bilinear Rectangle, Q4).
    7. PRACTICAL CONSIDERATIONS IN MODELING: INTERPRETING RESULTS AND EXAMPLES OF PLANE STRESS-STRAIN ANALYSIS.
    Finite Element Modeling. Equilibrium and Compatibility of Finite Element Results. Convergence of Solution. Interpretation of Stresses. Static Condensation. Flowchart for the Solution of Plane Stress-Strain Problems. Computer Program-Assisted Step-by-Step Solution, Other Models, and Results for Plane Stress-Strain Problems.
    8. DEVELOPMENT OF THE LINEAR-STRAIN TRIANGLE EQUATIONS.
    Derivation of the Linear-Strain Triangular Element Stiffness Matrix and Equations. Example of LST Stiffness Determination. Comparison of Elements.
    9. AXISYMMETRIC ELEMENTS.
    Derivation of the Stiffness Matrix. Solution of an Axisymmetric Pressure Vessel. Applications of Axisymmetric Elements.
    10. ISOPARAMETRIC FORMULATION.
    Isoparametric Formulation of the Bar Element Stiffness Matrix. Isoparametric Formulation of the Plane Quadrilateral Element Stiffness Matrix. Newton-Cotes and Gaussian Quadrature. Evaluation of the Stiffness Matrix and Stress Matrix by Gaussian Quadrature. Higher-Order Shape Functions.
    11. THREE-DIMENSIONAL STRESS ANALYSIS.
    Three-Dimensional Stress and Strain. Tetrahedral Element. Isoparametric Formulation and Hexahedral Element.
    12. PLATE BENDING ELEMENT.
    Basic Concepts of Plate Bending. Derivation of a Plate Bending Element Stiffness Matrix and Equations. Some Plate Element Numerical Comparisons. Computer Solutions for Plate Bending Problems.
    13. HEAT TRANSFER AND MASS TRANSPORT.
    Derivation of the Basic Differential Equation. Heat Transfer with Convection. Typical Units; Thermal Conductivities, K; and Heat-Transfer Coefficients, h. One-Dimensional Finite Element Formulation Using a Variational Method. Two-Dimensional Finite Element Formulation. Line or Point Sources. Three-Dimensional Heat Transfer by the Finite Element Method. One-Dimensional Heat Transfer with Mass Transport. Finite Element Formulation of Heat Transfer with Mass Transport by Galerkin''s Method. Flowchart and Examples of a Heat-Transfer Program.
    14. FLUID FLOW IN POROUS MEDIA AND THROUGH HYDRAULIC NETWORKS; AND ELECTRICAL NETWORKS AND ELECTROSTATICS.
    Derivation of the Basic Differential Equations. One-Dimensional Finite Element Formulation. Two-Dimensional Finite Element Formulation. Flowchart and Example of a Fluid-Flow Program. Electrical Networks. Electrostatics.
    15. THERMAL STRESS.
    Formulation of the Thermal Stress Problem and Examples.
    16. STRUCTURAL DYNAMICS AND TIME-DEPENDENT HEAT TRANSFER
    Dynamics of a Spring-Mass System. Direct Derivation of the Bar Element Equations. Numerical Integration in Time. Natural Frequencies of a One-Dimensional Bar. Time-Dependent One-Dimensional Bar Analysis. Beam Element Mass Matrices and Natural Frequencies. Truss, Plane Frame, Plane Stress, Plane Strain, Axisymmetric, and Solid Element Mass Matrices. Time-Dependent Heat-Transfer. Computer Program Example Solutions for Structural Dynamics.
    APPENDIX A: MATRIX ALGEBRA.
    Definition of a Matrix. Matrix Operations. Cofactor of Adjoint Method to Determine the Inverse of a Matrix. Inverse of a Matrix by Row Reduction. Properties of Stiffness Matrices.
    APPENDIX B: METHODS FOR SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS.
    Introduction. General Form of the Equations. Uniqueness, Nonuniqueness, and Nonexistence of Solution. Methods for Solving Linear Algebraic Equations. Banded-Symmetric Matrices, Bandwidth, Skyline, and Wavefront Methods.
    APPENDIX C: EQUATIONS FOR ELASTICITY THEORY.
    Introduction. Differential Equations of Equilibrium. Strain/Displacement and Compatibility Equations. Stress-Strain Relationships.
    APPENDIX D: EQUIVALENT NODAL FORCES.
    APPENDIX E: PRINCIPLE OF VIRTUAL WORK.
    APPENDIX F: PROPERTIES OF STRUCTURAL STEEL AND ALUMINUM SHAPES.
    ANSWERS TO SELECTED PROBLEMS.
    INDEX.

    • CHAPTER OBJECTIVES AND END-OF-CHAPTER SUMMARY EQUATIONS INCREASE UNDERSTANDING. Chapter objectives help students know what content to focus on and retain. Key summary equations help students review what they have learned.
    • PRESENTATION IS IDEAL FOR THOSE NEW TO THE FIELD. Written as a basic learning tool for students in civil and mechanical engineering, this edition does not presume an extensive background in structural analysis. Math is presented in a simple and straightforward manner to maximize comprehension.
    • PRAGMATIC AND CONSISTENT STRUCTURE ENSURES UNDERSTANDING. Topics progress from basic to advanced as each chapter follows a similar structure and format. General principles are presented for each topic, followed by traditional applications of these principles as well as computer applications, where relevant.
    • EXTENSIVE APPENDICES OFFER ADDITIONAL INFORMATION FOR REINFORCEMENT AND ADVANCED STUDY. Helpful appendices include basic matrix algebra (used throughout the text), solutions methods for simultaneous equations, equations from elasticity theory, equivalent nodal forces, the principle of virtual work, and properties of structural steel and aluminum shapes.
    • WORKED EXAMPLES CLEARLY ILLUSTRATE CONCEPTS. Many worked examples appear throughout the text to demonstrate correct methodology. These examples are solved step by step to show students how to apply essential concepts.
    • 16-PAGE COLOR INSERT. Many of the three-dimensional images in the book are illustrated for clearer comprehension.
    • Daryl L. Logan is Professor of Mechanical Engineering at the University of Wisconsin-Platteville. He received his Ph.D. in 1972 from the University of Illinois –- Chicago. He has been a member of the American Society of Mechanical Engineers (ASME), Tau Beta Pi - National Honor Society, and the American Society for Engineering Education (ASEE). He holds a Professional Engineer's License in the state of Indiana.