저자 : David C. Howell | 역자: 도경수, 박태진, 신현정 | 출간 연도 : 2018
ISBN | 9788962184235 () |
---|---|
가격 | 30,000원 |
저자 | David C. Howell |
역자 | 도경수, 박태진, 신현정 |
출간 연도 | 2018 |
판 | 9 |
페이지 | 740쪽 |
크기 | 190x260 |
판매처 |
학지사
자세히보기
* 교재는 판매처를 통해 구매하실 수 있습니다. ![]() |
원서 ISBN | 9781305652972 |
이 책은 심리학, 교육학, 기타 행동과학을 처음 배우는 학생들을 위해 쓰여졌습니다. 학생들이 통계를 어려워하게 만드는데 상당한 역할을 하고 있는, 계산 과정에 치우치도록 통계를 가르쳐온 관행을 벗어나 통계의 의미를 실제 예에 접목해서 설명하고 있습니다. 교재에서 계산 부분은 과감히 줄이고 실제 연구 예들을 중심으로 통계의 기본적인 개념들을 이해하기 쉽게 서술하고 있습니다.
1장 도입
2장 기본 개념
3장 자료 보여주기
4장 집중경향치
5장 변산성
6장 정상분포
7장 확률의 기본 개념
8장 표집분포와 가설검증
9장 상관
10장 회귀
11장 중다회귀
12장 평균에 적용된 가설검증: 단일표본
13장 평균에 적용된 가설검증: 두 상관표본
14장 평균에 적용된 가설검증: 두 독립표본
15장 검증력
16장 일원변량분석
17장 요인변량분석
18장 반복측정 변량분석
19장 카이제곱
20장 비모수적 통계검증과 분표무관 통계검증
21장 메타분석
부록 A 기호와 의미
부록 B 통계 기본공식
부록 C 자료 세트
부록 D 통계표
용어 해설
참고문헌
연습문제 해답
찾아보기
Table of Contents
1. Introduction.
2. Basic Concepts.
3. Displaying Data.
4. Measures of Central Tendency.
5. Measures of Variability.
6. The Normal Distribution.
7. Basic Concepts of Probability.
8. Sampling Distributions and Hypothesis Testing.
9. Correlation.
10. Regression.
11. Multiple Regression.
12. Hypothesis Tests Applied to Means: One Sample.
13. Hypothesis Tests Applied to Means: Two Related Samples.
14. Hypothesis Tests Applied to Means: Two Independent Samples.
15. Power.
16. One-Way Analysis of Variance.
17. Factorial Analysis of Variance.
18. Repeated-Measures Analysis of Variance.
19. Chi-Square.
20. Nonparametric and Resampling Statistical Tests.
21. Meta-Analysis.
Appendix A: Arithmetic Review.
Appendix B: Symbols and Notation.
Appendix C: Basic Statistical Formulae.
Appendix D: Data Set.
Appendix E: Statistical Tables.
Glossary.
References.
Answers to Exercises.
Index.
Features/Benefits Hundreds of exercises, most of which are based on data from published research, promote student interest and provide the context of statistics in behavioral research.
Recent editions emphasize the importance of measures of effect size and, while covering statistical hypothesis tests in detail, downplay the idea that the goal of a statistical analysis is simply to reject, or not reject, some null hypothesis. This approach is very much in line with current discussions of hypothesis testing. The discussion of meta-analysis emphasizes the importance of seeing one experiment in the context of others.
Each chapter begins with a listing of terms to be used in the chapter that were introduced earlier. The author includes terms that students have the hardest time understanding, and which consequently warrant repeating. Especially in the early chapters, terms are redefined not only when first introduced, but also when used a second, third, or even a fourth time.
The book's clear writing, clear definition of terms, and use of worked out examples help students understand some of the more difficult concepts in statistics.
The text is full of applications, with real data used in all examples. This places a real life perspective on the material and allows for deeper student understanding. The applications are listed on the inside front covers.
Based on the author's belief that formulas are most helpful in helping students learn concepts, rather than for computation, formulas used in the book are definitional rather than for purposes of calculation.